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In a recent papefPhys. Rev. E48, 1254(1993], an alternative procedure is proposed for obtaining the
nematic director field that minimizes the total free energy of a nematic liquid crystal. In this Comment we show
that this solution does not correspond to a minimum of the free eng8dP63-651X%96)01711-4

PACS numbsg(s): 61.30.Gd, 61.30.Cz, 62.20.Dc

It is known in nematic liquid crystal$NLC’s) that the tions to the class of configuratior®,,, where|d<&, [Eq.
Nehring-Saupe free energ¥, is not bounded from below (24) of [2]]. It is further argued ir{2] that a minimization
due to the presence of the, 5 surfacelike elastic term. Thus, over this class of functions can be carried out by considering
a minimizing director field cannot be found in the class ofthe Euler-Lagrange equation resulting fraf and suitable
continuous functions. This is termed “tfi,; problem” and ~ boundary conditiongEq. (25 of [2]]. Here we show that
has been the object of some debate in the literaftlired]. minimization over theC,, class of configurations is not
According to[1], the K ,-surface elastic term favors the oc- equivalen.t.to this Euler-Lagrange equation with these bound-
currence of a discontinuity of the director field at the inter-&7Y conditions. We do so by solving this Euler-Lagrange

faces of the NLC. Obviously, this director discontinuity is an €duation and boundary conditions for a specific, simple, ex-
artifact of the elastic theory becaus® corresponds to a actly soluble example. We then show that a small perturba-

vuncted expansion of the ot ree enerywhich s ac- o of s soluen, o g e condiion rat e con
tually bounded from below. In recent years, different theo- 9 . : &,
retical approaches have been proposed in the liter2u4] frge_ e'ngargy}‘z. Hence thls. solution does not represent a

. . minimizing solution forF, in the classC,,. On the other
to bypass this problem. If8] a second order elastic theory

. . oo hand, if there were a minimum for the free enetgywithin
has been proposed. In this theory, the elastic contributions UBnd not at the boundary &,., then it should satisfy this
m:?

to the fourth order in the director gradients are retained in th%uler—Lagrange equation with these boundary conditions.
expansion of the elastic free energy density. The second O{ye conclude that the minimum o, in C,, is (at the least in
der elastic free energy=7,+7, is bounded from below this examplg on the boundary of,,, that is, thaté=¢,.

and the minimizing director field is the superposition of aThys, the minimization off, in the class of configurations
standard slow macroscopic distortion and a sharp interfaciat_ is not equivalent to the solution of the Euler-Lagrange
distortion. The characteristic thickness of the interfacial diS'equations and boundary conditions suggestel@jn

tortion is of the order of a few molecular lengths. From the | et us consider a NLC layer of thicknesissandwiched
macroscopic point of view, the interfacial distortion is petween two solid parallel plates. The two planar interfaces
equivalent to the discontinuity of the director field, which is gre atz=—d/2 and z=d/2, respectively. The directon
predicted by the first order elastic theory]. In a recent makes an anglé with thez axis in thex-z plane. We restrict
paper[2], a different solution to this problem has been pro-our attention here to one-dimensional distortions, where

posed. The author c{12_] notes that the higher order elastic n=(siné(z),0,co¥(z)); for this case, the free energy per unit
terms(Fg,Fs, - - . ), Which are not taken into account by the gy rface area of the NLC layer is

second order theory, can play an important role and the total
free energyF can appreciably differ from the second order
free energy. It is then argued on phenomenological grounds
that, if the surface normal derivativieexceeds a finite value .
&n, the total free energy will be very large, whereas for —f14(65,65), (1)
| <&y, F=F,. Hence the actual minimum of the total free ,

energy can be found operationally by considering only thevhere 6=dé6/dz, 6,=6(—d/2), 6,=6(d/2), andW,; and W,
first order free energyF, restricting the allowed configura- are the anchoring energies at the two planar interfédegss

dr2 _ _
Fa= ffdleb( 0,0)dz+W,(60,) +Wo(0,) +f15(601,61)
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the bulk free energy density, arfd; is the surface elastic z=—d/2 and z=d/2, respectively, andD(A#’) represents
free energy density. The explicit form off;3 is  contributions of second order ihd. The integrand in Eq4)
fia(a,a) = (K,42)sin2a)a, wherea and « are the director vanishes becausé(z) is a solution of Eq.(2), while the
angle and itz derivative at the interfacelex=6, or a=6,).  contributions proportional t\6;, and Ag, are zero because
The Euler-Lagrange equation for the director angle is the functionA#(z) vanishes at the interfaces. Therefore the
free energy for the perturbed function reduces to
JF, d dF,
—— ——=0. 2

KqzA
0 dz 96 Fo=Fpt > 9 e+0(&?), (5)

According to[2], the equilibrium configuration must be a o
solution of Eq.(2) everywhere(also at the surfacgsWe  hereAg+0 is defined in Eq(3). Hencef(z) is not a mini-
denote this solution by(z) and the corresponding free en- mizing function even in_the class,, (e<1). This is the main
ergy by 7,. reason why the functiod(z) does not satisfy the test of the
We show here thaﬂ(z) does not minimizeF,, even in  g|astic torque4].
the restricted clas€,. Consider, for instance, the function T make our theoretical result clearer, let us consider the
0(2)=6(2) +A6(2), wher¢A0=sf(;). e is a small pertur-  simpler example in which the two solid plates strongly an-
bative coefficient and(z) is a function that vanishes at both chor the director at the tilted angte= 6, with respect to the
the interfaces (- d/2)=1f(d/2)=0] and satisfies the condi- 7 axis in thex-z plane. We assume isotropic elastic constants
tion (K1;=K33=K). The 6(z) solution for the present problem is
= = the uniform alignment= 6, everywhere. The free energy of
Ag=sin(26,)(—d/2)—sin(20;)f(di2)#0.  (3)  the uniform solutions=4, is F,=0. Now consider the func-

; _ o ; tion 6(z) = 6,+a cos[wz/d], wherea is an arbitrary con-
We substituted(z) = 6(z) + A6(z) in Eq. (2) and make a
power expansion at the first order in the small perturbaﬂor?talnt Th's funct|on still satisfies the boundary conditions

A#§(z). Simple calculations give =60,=6,. Its free energy per unit surface area is
2 .
— dr2 (9Fb d (9Fb _[ K ] 2 Kl3S|n(205)7T
f:f+f LIPS = G (3 T ®)
2 e d/z( d60 dz 96 4d d
OFp oW, df5 The minimum value of the free energy per unit area is at-
T T T T 2 tained fora= — 2R sin(26,)/7, whereR=K4/K. Hence, the
90y 90, 96, uniform solution =6, (a=0) does not minimize the free

ing solution in the restricted clags, of functionsé(z) hav-

ing |6(2)| <&, i.e., the functionsf(z) = 6+ a cos[wz/d]

with |7ra/d|<§,. Indeed, whatever is the value &f,, any
function with K;;a<0 and |a|<|2R sin(26,)/m| has a free
energy lower tharf,=0. We infer that the minimum af-,

o o in the classC,, cannot be obtained by solving the Euler-
where F, is the free energy per unit area of solutiétz);  Lagrange equation and the boundary conditions proposed in
(A6), and (A 9), are thez derivatives of functiomé(z) at  [2]

IF,  IW, of
T . 13
90, 90, 96,

) energy ifK,5#0. Furthermorep= 4, is also not a minimiz-
1

NEALE 9f1a ,
(Aﬁ)l—g(Aﬁ)erO(AH )s (4)
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